Analysis of Covariance for 2 Independent Samples
For Importing Data from a Spreadsheet

The logic and computational details of the one-way
independent-samples ANCOVA are described
in Chapter 17 of Concepts and Applications.

This page will perform an analysis of covariance for three independent samples, A and B, where Procedure: When importing data from a spreadsheet, the paired values of CV and DV for each sample must be in the form of two adjacent columns, as shown in the following figure, with the CV for each sample on the left and the DV on the right. Within the spreadsheet application, select and copy the two columns of data for Sample A.

Then return to this page, click the cursor into the data-entry field for Sample A, below, and perform the 'Paste' operation. Do the same for Sample B, then click the 'Calculate' button.

For each sample, make sure that the final entry is not followed by an extra line. (An extra line after the final entry in a sample will be interpreted as an extra data entry whose value is zero.) After all values for a sample have been entered, click the cursor immediately to the right of the final entry in the list, then press the down-arrow key. If an extra line is present, the cursor will move downward. Extra lines can be removed by pressing the down arrow key until the cursor no longer moves, and then pressing the 'Backspace' key (on a Mac platform, 'delete') until the cursor stands immediately to the right of the final entry.

Data Entry:
  CV = concomitant variable [left column in each sample]
  DV = dependent variable [right column in each sample]
Levels of
Independent Variable
Sample A Sample B

Dependent Variable
Sample Total
Observed Means
Adjusted Means

Aggregate Correlation within Samples: CV vs DVQ
r =
r2 =

Source SS df MS F P
adjusted means
adjusted error
adjusted total

Test for homogeneity of regressions:Q
Source SS df MS F P
adjusted error

Home Click this link only if you did not arrive here via the VassarStats main page.

©Richard Lowry 2001-
All rights reserved.